A hybrid approach to integrate genetic algorithm into dual scoring model in enhancing the performance of credit scoring model
نویسندگان
چکیده
Credit scoring model is an important tool for assessing risks in financial industry, consequently the majority of financial institutions actively develops credit scoring model on the credit approval assessment of new customers and the credit risk management of existing customers. Nonetheless, most past researches used the one-dimensional credit scoring model to measure customer risk. In this study, we select important variables by genetic algorithm (GA) to combine the bank’s internal behavioral scoring model with the external credit bureau scoring model to construct the dual scoring model for credit risk management of mortgage accounts. It undergoes more accurate risk judgment and segmentation to further discover the parts which are required to be enhanced in management or control frommortgage portfolio. The results show that the predictive ability of the dual scoring model outperforms both onedimensional behavioral scoring model and credit bureau scoring model. Moreover, this study proposes credit strategies such as on-lending retaining and collection actions for corresponding customers in order to contribute benefits to the practice of banking credit. 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Using the Hybrid Model for Credit Scoring (Case Study: Credit Clients of microloans, Bank Refah-Kargeran of Zanjan, Iran)
In any country, commercial banks lay the groundwork for economic growth by collecting national resources and capitals and allocating them to different economic sectors. Optimal allocation of resources is especially important in achieving this goal. Banks with an effective and dynamic system of customer assessment can efficiently allocate their resources to customers regardless of their geograph...
متن کاملImproved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کاملCredit scoring in banks and financial institutions via data mining techniques: A literature review
This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct onli...
متن کاملEnhancing credit scoring model performance by a hybrid scoring matrix
Competition of the consumer credit market in Taiwan has become severe recently. Therefore, most financial institutions actively develop credit scoring models based on assessments of the credit approval of new customers and the credit risk management of existing customers. This study uses a genetic algorithm for feature selection and decision trees for customer segmentation. Moreover, it utilize...
متن کاملAn Integrated Genetic-based Model of Naive Bayes Networks for Credit Scoring
Inappropriate management in some fields such as credit allocation has imposed too many losses to financial institutions and even has forced some of them to go bankrupt. Moreover, large volume data sets collected by credit departments has necessitated utilizing highly accurate models with less complexities. Credit scoring models with classification and forecasting customers into two groups good ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 39 شماره
صفحات -
تاریخ انتشار 2012